Vol. 45 No. Especial (2025): Current Controversies in Metaphysics of Science: Topics, Foundations, and Scope
Articles

“Heuristic Realism” and its Role in the Second Quantum Revolution

Ezequiel Irigoyen
Facultad de Filosofía y Letras, Universidad de Buenos Aires, Buenos Aires, Argentina.
Alejandro Rota
Facultad de Filosofía y Letras, Universidad de Buenos Aires, Buenos Aires, Argentina.

Published 2025-12-30

Keywords

  • Metafísica científica,
  • Mecánica cuántica,
  • No-localidad,
  • Realismo científico,
  • Instrumentalismo
  • Metaphysics of Science,
  • Quantum Mechanics,
  • Non-Locality,
  • Scientific Realism,
  • Instrumentalism

Abstract

Throughout history, the objective of factual sciences has been both the control and the understanding of natural phenomena. However, for many years (and to a certain extent still persisting today), this fruitful symbiosis was nullified by an “instrumentalist” position, which considers any attempt to understand observable phenomena by means of an image of the underlying (unobservable) world as a mere metaphysical “tale”. A tale that would be unnecessary — at best — or even harmful to the scientific enterprise. This article aims to demonstrate that, beyond the philosophical commitments one decides to assume — or not — with realism, some episodes in the history of science show that a realistic attitude at the scientific level can be an important part of the factors that drive discoveries. To do so, we will focus on a paradigmatic case of quantum mechanics, the postulation and subsequent acceptance of one of the most revolutionary phenomena of the second half of the last century, “non-local correlations.” We will argue that it was the realistic attitude of scientists such as Einstein, Bohm and Bell — among others — that drove the research that would ultimately lead to this discovery, research that found no motivation from an anti-realist view of science.

References

  1. Aharonov, Y., & Bohm, D. (1957). Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky. Physical Review, 108(4), 1070-1076. https://doi.org/10.1103/PhysRev.108.1070
  2. Albert, D. (1996). Elementary quantum metaphysics. En J. Cushing, A. Fine, & S. Goldstein (Ed.), Bohmian mechanics and quantum theory: An appraisal (pp. 277-284). Kluwer Academic. https://doi.org/10.1007/978-94-015-8715-0_19
  3. Andreoletti, G., & Vervoort, L. (2022). Superdeterminism: A reappraisal. Synthese, 200(5), 1-20. http://doi.org/10.1007/s11229-022-03832-6
  4. Aspect, A., Grangier, P., & Roger G. (1982). Experimental realization of Einstein-Podolski-Rosen-Bohm Gedankenexperiment: A new violation of Bell’s inequalities. Physical Review Letters, 49(2), 91-94. https://doi.org/10.1103/PhysRevLett.49.91
  5. Baas, A., & Le Bihan, B. (2023). What does the world look like according to superdeterminism? The British Journal for the Philosophy of Science, 74(3), 555-572. https://doi.org/10.1086/714815
  6. Bacciagaluppi, G., & Valentini, A. (2009). Quantum theory at the crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press. https://doi.org/10.48550/arXiv.quant-ph/0609184
  7. Bell, J. (1964). On the Einstein Podolsky Rosen paradox. Physics, 1, 195-200. https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
  8. Bell, J. (1966). On the problem of hidden variables in quantum mechanics. Reviews of Modern Physics, 38(3), 447-468. https://doi.org/10.1103/RevModPhys.38.447
  9. Bell, J. (1987). Speakable and unspeakable in quantum mechanics. Cambridge University Press. https://doi.org/10.1017/CBO9780511 815676
  10. Beller, M. (1996). Bohm and the “inevitability” of acausality. En R. Cohen (Ed.), Bohmian mechanics and quantum theory: An appraisal (pp. 211-230). Kluwer Academic. https://doi.org/10.1007/978-94-015-8715-0
  11. Bohm, D. (1951). Quantum theory. Prentice-Hall.
  12. Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of ‘hidden’ variables (partes I y II). Physical Review, 85(2), 166-179 y 180-193. https://doi.org/10.1103/PhysRev.85.166
  13. Bohr, N. (1935). Can quantum mechanical description of reality be considered complete? Physical Review, 48, 696-702. https://doi.org/10.1103/PhysRev.48.696
  14. Bohr, N. (1961). Atomic theory and the description of nature. Cambridge University Press. https://doi.org/10.1119/1.1942160
  15. Borge, B. (2015). Realismo científico hoy: A 40 años de la formulación del Argumento del No Milagro. Acta Scientiarum. Human and Social Sciencies, 37(2), 221-233. https://doi.org/10.4025/actascihumansoc.v37i2.26933
  16. Bricmont, J. (2016). Making sense of quantum mechanics. Springer. https://doi.org/10.1007/978-3-319-25889-8
  17. Chakravartty, A. (2020). Acerca de la relación entre el realismo científico y la metafísica científica. En B. Borge & N. Gentile (Eds.), La ciencia y el mundo inobservable: Discusiones contemporáneas en torno al realismo científico. Eudeba.
  18. Corry, R. (2015). Retrocausal models for EPR. Studies in History and Philosophy of Modern Physics, 49, 1-9. https://doi.org/10.1016/j.shpsb.2014.11.001
  19. Costa de Beauregard, O. (1976). Time symmetry and interpretation of quantum mechanics. Foundations of Physics, 6(5), 539-559. https://doi.org/10.1007/BF00715107
  20. Cramer, J. (1980). Generalized absorber theory and the Einstein-Podolsky-Rosen paradox. Physical Review D, 22(2), 362–376. https://doi.org/10.1103/PhysRevD.22.362
  21. Dieks, D. (2017). Von Neumann’s impossibility proof: Mathematics in the service of rhetorics. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 60, 136-148. https://doi.org/10.1016/j.shpsb.2017.01.001
  22. Dowe, P. (1997). A defense of backwards in time causation models in quantum mechanics. Synthese, 112(2), 233-246. https://doi.org/10.1023/a:1004932911141
  23. Einstein, A., Podolsky, B. y Rosen, N. (1935). Can quantum mechanical description of reality be considered complete? Physical Review, 47, 777-780. https://doi.org/10.1103/PhysRev.47.777
  24. Esfeld, M. (2004). Quantum entanglement and a metaphysics of relations. Elsevier, 35(4), 601-617. https://doi.org/10.1016/j.shpsb.2004.04.008
  25. Friedman, M. (1983). Foundations of space-time theories, relativistic physics and philosophy of science. Princeton University Press.
  26. Giustina, M., Versteegh, M., Wengerowsky, S., Handsteiner, J., Hochrainer, A., Phelan, K., Steinlechner, F., Kofler, J., Larsson, J., Abellán, C., Amaya, W., Pruneri, V., Mitchell, M., Beyer, J., Gerrits, T., Lita, A., Shalm, L., Nam, S., Scheidl, T., … Zeilinger, A. (2015). Significant-loophole-free test of Bell’s theorem with entangled photons. Physical Review Letters, 115, 250401. https://doi.org/10.1103/PhysRevLett.115.250401
  27. Healey, H. (1994). Nonseparable processes explanation and causal explanation. Studies in History and Philosophy of Science, 25(3), 337-374. https://doi.org/10.1016/0039-3681(94)90057-4
  28. Heisenberg, W. (1927). Ueber den anschaulichen Inhalt der quanten theoretischen Kinematik and Mechanik. Zeitschrift für Physik, 43, 172-198. https://doi.org/10.1007/BF01397280
  29. Heinsenberg, W. (1959). Física y filosofía. La Isla.
  30. Heisenberg, W. (1967). Quantum theory and its interpretation. En S. Rosental (Ed.), Niels Bohr: His life and work as seen by his friends (pp. 94-108). North-Holland.
  31. Hensen, B., Bernien, H., Dréau, A., Reiserer, A., Kalb, N., Blok, M., Ruitenberg, J., Vermeulen, R., Schouten, R., Abellán, C., Amaya, W., Pruneri, V., Mitchell, M., Markham, M., Twitchen, D., Elkouss, D., Wehner, S., Taminiau, T., & Hanson, R. (2015). Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 526(7575), 682-686. https://doi.org/10.1038/nature15759
  32. Hermann, A. (1968). Carta 53 del 09/11/1927. En A. Hermann (Ed.), Albert Einstein / Arnold Sommerfeld Briefwechsel (p. 112). Schwabe & Co.
  33. Holland, P. (1993). The quantum theory of motion: An account of the De Broglie-Bohm causal interpretation of quantum mechanics. Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511 622687
  34. Hossenfelder, S., & Palmer, T. (2020). Rethinking superdeterminism. Frontiers in Physics, 8(139), 1-24. https://doi.org/10.48550/arXiv. 1912.06462
  35. Howard, D. (1989). Holism, Separability, and the metaphysical implications of the Bell experiments. En J. Cushing & E. McMullin (Eds.), Philosophical consequences of quantum theory: Reflections on Bell’s theorem (pp. 224-253). University of Notre Dame Press.
  36. Marage, P., & Wallenborn, G. (1999). The Solvay councils and the birth of modern physics. Springer. https://doi.org/10.2307/3621708
  37. Maudlin, T. (2011). Quantum non-locality and relativity: Metaphysical intimations of modern physics. Blackwell. https://doi.org/10.10 02/9781444396973
  38. Maudlin, T. (2014). What Bell did. Journal of Physics A: Mathematical and Theoretical, 47(2), 424010. https://doi.org/10.48550/arXiv.1408.1826
  39. Mermin, D. (1989). What’s wrong with this pillow? Physics Today, 42(4), 9-11. https://doi.org/10.1063/1.2810963
  40. Miller, D. (1996). Realism and time symmetry in quantum mechanics. Physics Letters A, 222(1/2), 31-36. https://doi.org/10.1016/0375-9601(96)00620-2
  41. Morganti, M. (2009). A new look at relational holism in quantum mechanics. Philosophy of Science, 76, 1027-1038. https://doi.org/10.1086/605809
  42. Norsen, T. (2017). Foundations of quantum mechanics: An exploration of the physical meaning of quantum theory. Springer. https://doi.org/10.1007/978-3-319-65867-4
  43. Placek, T. (2004). Quantum state holism: A case for holistic causation. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 35(4), 671-692. https://doi.org/10.1016/j.shpsb.2004.06.001
  44. Price, H. (1997). Time’s arrow and Archimedes’ point: New directions for the physics of time. Oxford University Press. https://doi.org/10.2307/2653578
  45. Shalm, L., Meyer-Scott, E., Christensen, B., Bierhorst, P., Wayne, M., Stevens, M., Gerrits, T., Glancy, S., Hamel, D., Allman, M., Coakley, K., Dyer, S., Hodge, C., Lita, A., Verma, V., Lambrocco, C., Tortorici, E., Migdall, A., Zhang, Y., & Nam, S. (2015). Strong loophole-free test of local realism. Physical Review Letters, 115(250402). https://doi.org/10.1103/PhysRevLett.115.250402
  46. Sutherland, R. (1983). Bell’s theorem and backwards-in-time causality. International Journal of Theoretical Physics, 22(4), 377-384. https://doi.org/10.1007/BF02082904
  47. van Fraassen, B. C. (1980). The scientific image. Oxford University Press.
  48. von Neumann, J. (1932). Mathematische grundlagen der quantenmechanik. Springer. https://doi.org/10.1007/978-3-322-94058-2_6
  49. Wharton, K. (2007). Time-symmetric quantum mechanics. Foundations of Physics, 37(1), 159-168. https://doi.org/10.1007/s10701-006-9089-1
  50. Wick, D. (1998). The infamous boundary. Copernicus. https://doi.org/10.1007/978-1-4612-5361-7